Ordinal Analysis and the Infinite Ramsey Theorem
نویسندگان
چکیده
The infinite Ramsey theorem is known to be equivalent to the statement ‘for every set X and natural number n, the n-th Turing jump of X exists’, over RCA0 due to results of Jockusch [5]. By subjecting the theory RCA0 augmented by the latter statement to an ordinal analysis, we give a direct proof of the fact that the infinite Ramsey theorem has proof-theoretic strength εω. The upper bound is obtained by means of cut elimination and the lower bound by extending the standard well-ordering proofs for ACA0. There is a proof of this result due to McAloon [6], using model-theoretic and combinatorial techniques. According to [6], another proof appeared in an unpublished paper by Jäger.
منابع مشابه
The Paris-Harrington Theorem
In Ramsey theory, very large numbers and fast-growing functions are more of a rule than an exception. The classical Ramsey numbers R(n,m) are known to be of exponential size: the original proof directly gives the upper bound R(n,m) ≤ ( m+n−2 n−1 ) , and an exponential lower bound is also known. For the van der Waerden numbers, the original proof produced upper bounds that were not even primitiv...
متن کاملA Polychromatic Ramsey Theory for Ordinals
The Ramsey degree of an ordinal α is the least number n such that any colouring of the edges of the complete graph on α using finitely many colours contains an n-chromatic clique of order type α. The Ramsey degree exists for any ordinal α < ω. We provide an explicit expression for computing the Ramsey degree given α. We further establish a version of this result for automatic structures. In thi...
متن کاملExistence of solutions of infinite systems of integral equations in the Frechet spaces
In this paper we apply the technique of measures of noncompactness to the theory of infinite system of integral equations in the Fr´echet spaces. Our aim is to provide a few generalization of Tychonoff fixed point theorem and prove the existence of solutions for infinite systems of nonlinear integral equations with help of the technique of measures of noncompactness and a generalization of Tych...
متن کاملRamsey Properties of Countably Infinite Partial Orderings
A partial ordering P is chain-Ramsey if, for every natural number n and every coloring of the n-element chains from P in finitely many colors, there is a monochromatic subordering Q isomorphic to P. Chain-Ramsey partial orderings stratify naturally into levels. We show that a countably infinite partial ordering with finite levels is chain-Ramsey if and only if it is biembeddable with one of a c...
متن کاملAn infinite Ramsey theorem and some Banach - space dichotomies
A problem of Banach asks whether every infinite-dimensional Banach space which is isomorphic to all its infinite-dimensional subspaces must be isomorphic to a separable Hilbert space. In this paper we prove a result of a Ramsey-theoretic nature which implies an interesting dichotomy for subspaces of Banach spaces. Combined with a result of Komorowski and TomczakJaegermann, this gives a positive...
متن کامل